

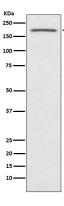
ACE1 Antibody

Rabbit mAb Catalog # AP91542

Product Information

Application Primary Accession Reactivity Clonality Other Names	WB, IHC, FC <u>P12821</u> Human, Mouse Monoclonal Angiotensin-converting enzyme; somatic isoform precursor; CD143 antigen; DCP; DCP1; Dipeptidyl carboxypeptidase I; Kininase II;
lsotype	Rabbit IgG
Host	Rabbit
Calculated MW	149715

Additional Information


Dilution Purification Immunogen Description	WB 1:500~1:1000 IHC 1:50~1:200 FC 1:30 Affinity-chromatography A synthesized peptide derived from human ACE1 Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving
Storage Condition and Buffer	the mannose linkage in the GPI moiety.

Protein Information

Name	ACE {ECO:0000303 PubMed:2849100, ECO:0000312 HGNC:HGNC:2707}
Function	Dipeptidyl carboxypeptidase that removes dipeptides from the C-terminus of a variety of circulating hormones, such as angiotensin I, bradykinin or enkephalins, thereby playing a key role in the regulation of blood pressure, electrolyte homeostasis or synaptic plasticity (PubMed: <u>15615692</u> , PubMed: <u>20826823</u> , PubMed: <u>2558109</u> , PubMed: <u>4322742</u> , PubMed: <u>7523412</u> , PubMed: <u>7683654</u>). Composed of two similar catalytic domains, each possessing a functional active site, with different selectivity for substrates (PubMed: <u>10913258</u> , PubMed: <u>1320019</u> , PubMed: <u>1851160</u> , PubMed: <u>19773553</u> , PubMed: <u>7683654</u> , PubMed: <u>7876104</u>). Plays a major role in the angiotensin-renin system that regulates blood pressure and sodium retention by the kidney by converting angiotensin I to angiotensin II, resulting in an increase of the vasoconstrictor activity of angiotensin (PubMed: <u>11432860</u> , PubMed: <u>1851160</u> , PubMed: <u>19773553</u> , PubMed: <u>23056909</u> , PubMed: <u>4322742</u>).

	Also able to inactivate bradykinin, a potent vasodilator, and therefore enhance the blood pressure response (PubMed:15615692, PubMed:2558109, PubMed:4322742, PubMed:6055465, PubMed:6270633, PubMed:7683654). Acts as a regulator of synaptic transmission by mediating cleavage of neuropeptide hormones, such as substance P, neurotensin or enkephalins (PubMed:15615692, PubMed:6208535, PubMed:6270633, PubMed:656131). Catalyzes degradation of different enkephalin neuropeptides (Met- enkephalin, Leu-enkephalin, Met-enkephalin-Arg-Phe and possibly Met- enkephalin-Arg-Gly-Leu) (PubMed:2982830, PubMed:6270633, PubMed:6566131). Acts as a regulator of synaptic plasticity in the nucleus accumbens of the brain by mediating cleavage of Met-enkephalin- Arg-Phe, a strong ligand of Mu-type opioid receptor OPRM1, into Met- enkephalin (By similarity). Met-enkephalin-Arg-Phe cleavage by ACE decreases activation of OPRM1, leading to long-term synaptic potentiation of glutamate release (By similarity). Also acts as a regulator of hematopoietic stem cell differentiation by mediating degradation of hemoregulatory peptide N-acetyl-SDKP (AcSDKP) (PubMed:26403559, PubMed:7876104, PubMed:8257427, PubMed:8609242). Acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (PubMed:18077343). Involved in amyloid-beta metabolism by catalyzing degradation of Amyloid-beta protein 40 and Amyloid-beta protein 42 peptides, thereby preventing plaque formation (PubMed:11604391, PubMed:16154999, PubMed:19773553). Catalyzes cleavage of cholecystokinin (maturation and degradation) hormones (PubMed:10336644, PubMed:2983326, PubMed:7683654, PubMed:93711719). Degradation of hemoregulatory peptide N-acetyl-SDKP (AcSDKP) and amyloid-beta proteins is mediated by the N-terminal catalytic domain, while angiotensin I and cholecystokinin cleavage is mediated by the C-terminal catalytic region (PubMed:10336644, PubMed:19773553, PubMed:7876104).
Cellular Location	Cell membrane; Single-pass type I membrane protein. Cytoplasm {ECO:0000250 UniProtKB:P09470}. Note=Detected in both cell membrane and cytoplasm in neurons. {ECO:0000250 UniProtKB:P09470} [Isoform Testis-specific]: Cell membrane; Single-pass type I membrane protein. Secreted. Note=The testis-specific isoform can be cleaved before the transmembrane region, releasing a soluble form
Tissue Location	Ubiquitously expressed, with highest levels in lung, kidney, heart, gastrointestinal system and prostate

Images

Western blot analysis of ACE1 expression in human fetal kidney lysate.