

PAK2 Antibody

Rabbit mAb Catalog # AP91582

Product Information

Application WB, IHC, IF, FC, ICC, IHF

Primary Accession Q13177

Reactivity Rat, Human, Mouse

Clonality Monoclonal

Other Names CB422; Gamma PAK; hPAK65; p27; p34; p58; p65PAK; PAK-2p34; Pak2; PAK65;

PAKgamma; S6 H4 kinase;

Isotype Rabbit IgG Rabbit Host Calculated MW 58043

Additional Information

Dilution WB 1:500~1:2000 IHC 1:100~1:500 ICC/IF 1:50~1:200 FC 1:80

Purification Affinity-chromatography

Immunogen A synthesized peptide derived from human PAK2

Description The activated kinase acts on a variety of targets. Phosphorylates ribosomal

> protein S6, histone H4 and myelin basic protein. Full length PAK 2 stimulates cell survival and cell growth. The process is, at least in part, mediated by

phosphorylation and inhibition of pro-apoptotic BAD.

Storage Condition and Buffer Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium

azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term.

Avoid freeze / thaw cycle.

Protein Information

PAK2 Name

Function Serine/threonine protein kinase that plays a role in a variety of different

signaling pathways including cytoskeleton regulation, cell motility, cell cycle

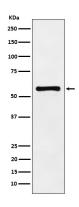
progression, apoptosis or proliferation (PubMed:12853446, PubMed: 16617111, PubMed: 19273597, PubMed: 19923322,

PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a

downstream effector of the small GTPases CDC42 and RAC1

(PubMed: 7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed: 7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:<u>21177766</u>). Phosphorylates many other substrates

including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964).


Cellular Location

[Serine/threonine-protein kinase PAK 2]: Cytoplasm Nucleus Note=MYO18A mediates the cellular distribution of the PAK2-ARHGEF7-GIT1 complex to the inner surface of the cell membrane

Tissue Location

Ubiquitously expressed. Higher levels seen in skeletal muscle, ovary, thymus and spleen

Images

Western blot analysis of PAK2 expression in HeLa cell lysate.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.