

ADAR1 Antibody

Rabbit mAb Catalog # AP91966

Product Information

Application WB, IHC, IF, FC, ICC, IHF

Primary Accession
Reactivity
Human
Clonality
Monoclonal

Other Names ADAR; Adar1; AGS6; DRADA; Dsh; Dsrad; IFI4; P136;

IsotypeRabbit IgGHostRabbitCalculated MW136066

Additional Information

Dilution WB 1:500~1:2000 IHC 1:50~1:200 ICC/IF 1:50~1:200 FC 1:50

Purification Affinity-chromatography

Immunogen A synthesized peptide derived from human ADAR1

Description Converts multiple adenosines to inosines and creates I/U mismatched base

pairs in double-helical RNA substrates without apparent sequence specificity. **Storage Condition and Buffer** Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium

Rabbit 18d in prospirate burier a sainte, pri 7.4, 15d in Naci, 0.0270 sound

azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term.

Avoid freeze / thaw cycle.

Protein Information

Name ADAR

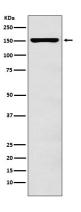
Synonyms ADAR1, DSRAD, G1P1, IFI4

Function Catalyzes the hydrolytic deamination of adenosine to inosine in

double-stranded RNA (dsRNA) referred to as A-to-I RNA editing

(PubMed: 12618436, PubMed: 7565688, PubMed: 7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure- dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site- specific editing). Its cellular RNA substrates include: bladder cancer- associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific

RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication.


Cellular Location

[Isoform 1]: Cytoplasm. Nucleus. Note=Shuttles between the cytoplasm and nucleus (PubMed:24753571, PubMed:7565688). Nuclear import is mediated by TNPO1 (PubMed:24753571).

Tissue Location

Ubiquitously expressed, highest levels were found in brain and lung (PubMed:7972084). Isoform 5 is expressed at higher levels in astrocytomas as compared to normal brain tissue and expression increases strikingly with the severity of the tumor, being higher in the most aggressive tumors.

Images

Western blot analysis of ADAR1 expression in Ramos cell lysate.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.