

CD105 Antibody

Rabbit mAb Catalog # AP92079

Product Information

Application	WB, IHC
Primary Accession	<u>P17813</u>
Reactivity	Human
Clonality	Monoclonal
Other Names	CD105; END; Endoglin; Eng; HHT1; ORW; ORW1; SN6;
lsotype	Rabbit IgG
Host	Rabbit
Calculated MW	70578

Additional Information

Dilution Purification Immunogen Description	WB 1:500~1:2000 IHC 1:50~1:200 Affinity-chromatography A synthesized peptide derived from human CD105 Major glycoprotein of vascular endothelium. May play a critical role in the binding of endothelial cells to integrins and/or other RGD receptors.
Storage Condition and Buffer	

Protein Information

Name	ENG
Synonyms	END
Function	Vascular endothelium glycoprotein that plays an important role in the regulation of angiogenesis (PubMed: <u>21737454</u> , PubMed: <u>23300529</u>). Required for normal structure and integrity of adult vasculature (PubMed: <u>7894484</u>). Regulates the migration of vascular endothelial cells (PubMed: <u>17540773</u>). Required for normal extraembryonic angiogenesis and for embryonic heart development (By similarity). May regulate endothelial cell shape changes in response to blood flow, which drive vascular remodeling and establishment of normal vascular morphology during angiogenesis (By similarity). May play a critical role in the binding of endothelial cells to integrins and/or other RGD receptors (PubMed: <u>1692830</u>). Acts as a TGF-beta coreceptor and is involved in the TGF-beta/BMP signaling cascade that ultimately leads to the activation of SMAD transcription factors (PubMed: <u>21737454</u> , PubMed: <u>22347366</u> , PubMed: <u>23300529</u> , PubMed: <u>8370410</u>). Required for GDF2/BMP9 signaling through SMAD1 in endothelial cells and modulates TGFB1 signaling through SMAD3 (PubMed: <u>21737454</u> , PubMed: <u>22347366</u> , PubMed: <u>23300529</u>).

Cellular Location	Cell membrane; Single-pass type I membrane protein
Tissue Location	Detected on umbilical veil endothelial cells (PubMed:10625079). Detected in placenta (at protein level) (PubMed:1692830). Detected on endothelial cells (PubMed:1692830)
Images	
KDa 250	Western blot analysis of CD105 expression in HUVEC cell lysate.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

150 — 100 — 75 — 50 — 37 —

> 25 — 20 — 15 — 10 —