

Cox2 Antibody

Rabbit mAb Catalog # AP92081

Product Information

ApplicationWB, IHC, IPPrimary AccessionP35354

Reactivity Human, Mouse **Clonality** Monoclonal

Other Names COX2; COX-2; Cyclooxygenase 2; PGH2; PGHS2; PHS2; TIS10; PTGS2;

IsotypeRabbit IgGHostRabbitCalculated MW68996

Additional Information

Dilution WB 1:500~1:2000 IHC 1:50~1:200 IP 1:50

Purification Affinity-chromatography

Immunogen A synthesized peptide derived from human Cox2

Description Converts arachidonate to prostaglandin H2 (PGH2), a committed step in

prostanoid synthesis. Constitutively expressed in some tissues in

physiological conditions, such as the endothelium, kidney and brain, and in

pathological conditions, such as in cancer. PTGS2 is responsible for

production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the

production of prostaglandin E2 (PGE2), which plays important roles in modulating motility, proliferation and resistance to apoptosis.

Storage Condition and Buffer Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium

azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term.

Avoid freeze / thaw cycle.

Protein Information

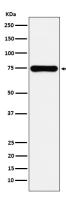
Name PTGS2 (HGNC:9605)

Function Dual cyclooxygenase and peroxidase in the biosynthesis pathway of

prostanoids, a class of C20 oxylipins mainly derived from arachidonate ((5Z,8Z,11Z,14Z)-eicosatetraenoate, AA, C20:4(n-6)), with a particular role in the inflammatory response (PubMed:11939906, PubMed:16373578,

PubMed: 19540099, PubMed: 22942274, PubMed: 26859324,

PubMed:<u>27226593</u>, PubMed:<u>7592599</u>, PubMed:<u>7947975</u>, PubMed:<u>9261177</u>). The cyclooxygenase activity oxygenates AA to the hydroperoxy endoperoxide prostaglandin G2 (PGG2), and the peroxidase activity reduces PGG2 to the hydroxy endoperoxide prostaglandin H2 (PGH2), the precursor of all 2-series prostaglandins and thromboxanes (PubMed:<u>16373578</u>, PubMed:<u>22942274</u>,


PubMed:<u>26859324</u>, PubMed:<u>27226593</u>, PubMed:<u>7592599</u>, PubMed:<u>7947975</u>, PubMed:9261177). This complex transformation is initiated by abstraction of hydrogen at carbon 13 (with S- stereochemistry), followed by insertion of molecular O2 to form the endoperoxide bridge between carbon 9 and 11 that defines prostaglandins. The insertion of a second molecule of O2 (bis-oxygenase activity) yields a hydroperoxy group in PGG2 that is then reduced to PGH2 by two electrons (PubMed: 16373578, PubMed: 22942274, PubMed:<u>26859324</u>, PubMed:<u>27226593</u>, PubMed:<u>7592599</u>, PubMed:<u>7947975</u>, PubMed: 9261177). Similarly catalyzes successive cyclooxygenation and peroxidation of dihomo-gamma-linoleate (DGLA, C20:3(n-6)) and eicosapentaenoate (EPA, C20:5(n-3)) to corresponding PGH1 and PGH3, the precursors of 1- and 3-series prostaglandins (PubMed: 11939906, PubMed: 19540099). In an alternative pathway of prostanoid biosynthesis, converts 2-arachidonoyl lysophopholipids to prostanoid lysophopholipids, which are then hydrolyzed by intracellular phospholipases to release free prostanoids (PubMed: 27642067). Metabolizes 2-arachidonoyl glycerol yielding the glyceryl ester of PGH2, a process that can contribute to pain response (PubMed:22942274). Generates lipid mediators from n-3 and n-6 polyunsaturated fatty acids (PUFAs) via a lipoxygenase-type mechanism. Oxygenates PUFAs to hydroperoxy compounds and then reduces them to corresponding alcohols (PubMed: 11034610, PubMed: 11192938, PubMed:9048568, PubMed:9261177). Plays a role in the generation of resolution phase interaction products (resolvins) during both sterile and infectious inflammation (PubMed: 12391014). Metabolizes docosahexaenoate (DHA, C22:6(n-3)) to 17R-HDHA, a precursor of the D-series resolvins (RvDs) (PubMed: 12391014). As a component of the biosynthetic pathway of E- series resolvins (RvEs), converts eicosapentaenoate (EPA, C20:5(n-3)) primarily to 18S-HEPE that is further metabolized by ALOX5 and LTA4H to generate 18S-RvE1 and 18S-RvE2 (PubMed:21206090). In vascular endothelial cells, converts docosapentaenoate (DPA, C22:5(n-3)) to 13R- HDPA, a precursor for 13-series resolvins (RvTs) shown to activate macrophage phagocytosis during bacterial infection (PubMed: <u>26236990</u>). In activated leukocytes, contributes to oxygenation of hydroxyeicosatetraenoates (HETE) to diHETES (5,15-diHETE and 5,11- diHETE) (PubMed:22068350, PubMed:26282205). Can also use linoleate (LA, (9Z,12Z)-octadecadienoate, C18:2(n-6)) as substrate and produce hydroxyoctadecadienoates (HODEs) in a regio- and stereospecific manner, being (9R)-HODE ((9R)-hydroxy-(10E,12Z)-octadecadienoate) and (13S)- HODE ((13S)-hydroxy-(9Z,11E)-octadecadienoate) its major products (By similarity). During neuroinflammation, plays a role in neuronal secretion of specialized preresolving mediators (SPMs) 15R-lipoxin A4 that regulates phagocytic microglia (By similarity).

Cellular Location

Microsome membrane; Peripheral membrane protein. Endoplasmic reticulum membrane; Peripheral membrane protein. Nucleus inner membrane; Peripheral membrane protein. Nucleus outer membrane; Peripheral membrane protein. Note=Detected on the lumenal side of the endoplasmic reticulum and nuclear envelope

Images

Western blot analysis of Cox2 expression in A549 cell lysate.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.