

FADS1 Antibody

Rabbit mAb Catalog # AP92659

Product Information

Application	WB, IHC, IF, FC, ICC, IHF
Primary Accession	<u>060427</u>
Reactivity	Rat, Human, Mouse
Clonality	Monoclonal
Other Names	D5D; Fads1; FADS6; FADSD5; LLCDL1; TU12;
Isotype	Rabbit IgG
Host	Rabbit
Calculated MW	51964

Additional Information

Dilution Purification Immunogen	WB 1:500~1:2000 IHC 1:50~1:200 ICC/IF 1:50~1:200 FC 1:50 Affinity-chromatography A synthesized peptide derived from FADS1
Description	Component of a lipid metabolic pathway that catalyzes biosynthesis of highly unsaturated fatty acids (HUFA) from precursor essential polyunsaturated fatty acids (PUFA) linoleic acid (LA) (18:2n-6) and alpha-linolenic acid (ALA) (18:3n-3).
Storage Condition and Buffer	

Protein Information

Name	FADS1 {ECO:0000303 PubMed:10860662, ECO:0000312 HGNC:HGNC:3574}
Function	[Isoform 1]: Acts as a front-end fatty acyl-coenzyme A (CoA) desaturase that introduces a cis double bond at carbon 5 located between a preexisting double bond and the carboxyl end of the fatty acyl chain. Involved in biosynthesis of highly unsaturated fatty acids (HUFA) from the essential polyunsaturated fatty acids (PUFA) linoleic acid (LA) (18:2n-6) and alpha-linolenic acid (ALA) (18:3n-3) precursors. Specifically, desaturates dihomo-gamma-linoleoate (DGLA) (20:3n-6) and eicosatetraenoate (ETA) (20:4n-3) to generate arachidonate (AA) (20:4n-6) and eicosapentaenoate (EPA) (20:5n-3), respectively (PubMed:10601301, PubMed:10769175). As a rate limiting enzyme for DGLA (20:3n-6) and AA (20:4n-6)-derived eicosanoid biosynthesis, controls the metabolism of inflammatory lipids like prostaglandin E2, critical for efficient acute inflammatory response and maintenance of epithelium homeostasis. Contributes to membrane phospholipid biosynthesis by providing AA (20:4n-6) as a major acyl chain esterified into phospholipids. In particular, regulates

	phosphatidylinositol-4,5-bisphosphate levels, modulating inflammatory cytokine production in T-cells (By similarity). Also desaturates (11E)- octadecenoate (trans-vaccenoate)(18:1n-9), a metabolite in the biohydrogenation pathway of LA (18:2n-6) (By similarity).
Cellular Location	[Isoform 1]: Endoplasmic reticulum membrane {ECO:0000250 UniProtKB:A4UVI1}; Multi-pass membrane protein {ECO:0000250 UniProtKB:A4UVI1}. Mitochondrion
Tissue Location	Widely expressed, with highest levels in liver, brain, adrenal gland and heart. Highly expressed in fetal liver and brain.

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.