RSK2 / RPS6KA3 Antibody Rabbit mAb Catalog # AP92828 #### **Product Information** **Application** WB, IHC, FC **Primary Accession** P51812 Reactivity Rat, Human, Mouse **Clonality** Monoclonal Other Names CLS; HU2; HU3; Insulin stimulated protein kinase 1; ISPK1; MAP kinase activated protein kinase 1b; MAPKAP kinase 1b; MAPKAPK 1b; MAPKAPK1B; MRX19; p90 RSK2; p90 RSK3; p90RSK3; pp90RSK2; Ribosomal protein S6 kinase alpha 3; Ribosomal protein s6 kinase ii alpha 2; Ribosomal S6 kinase 2; Rps6ka3; RSK; RSK2; S6 kinase 2; S6K alpha3; IsotypeRabbit IgGHostRabbitCalculated MW83736 ### **Additional Information** **Dilution** WB 1:500~1:2000 IHC 1:50~1:200 FC 1:50 **Purification** Affinity-chromatography Immunogen A synthesized peptide derived from human RSK2 / RPS6KA3 **Description** Serine/threonine kinase that may play a role in mediating the growth-factor and stress induced activation of the transcription factor CREB. Storage Condition and Buffer Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle. #### **Protein Information** Name RPS6KA3 Synonyms ISPK1, MAPKAPK1B, RSK2 **Function** Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro- apoptotic function of BAD and DAPK1 (PubMed:<u>16213824</u>, PubMed:<u>16223362</u>, PubMed:<u>17360704</u>, PubMed:<u>9770464</u>). In fibroblast, is required for EGF- stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:10436156, PubMed:9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed: 16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:<u>8250835</u>). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed: 17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed: 18508509, PubMed:18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin- sensitive signaling independently of the PI3K/AKT pathway (PubMed: 18722121). Mediates cell survival by phosphorylating the pro- apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed: 18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4- induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser- 897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed: 26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). **Cellular Location** Nucleus. Cytoplasm **Tissue Location** Expressed in many tissues, highest levels in skeletal muscle ## **Images** Western blot analysis of RSK2 / RPS6KA3 expression in MCF7 cell lysate. Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.