

IKK alpha Antibody

Catalog # ASC10060

Product Information

Application WB, IF, ICC, E **Primary Accession** 015111

Other Accession <u>AF009225</u>, <u>2327068</u>

Reactivity Human
Host Rabbit
Clonality Polyclonal
Isotype IgG
Calculated MW 84640

Conjugate Unconjugated

Application Notes IKK alpha antibody can be used for detection of IKK alpha by Western blot 0.5

□g/mL. A 85 kDa band should be detected. Antibody can also be used for immunocytochemistry starting at 10 □g/mL. For immunofluorescence start at

20 □g/mL.

Additional Information

Gene ID 1147

Other Names IKK alpha Antibody: IKK1, IKKA, IKBKA, TCF16, NFKBIKA, IKK-alpha, Inhibitor of

nuclear factor kappa-B kinase subunit alpha, Conserved helix-loop-helix ubiquitous kinase, I-kappa-B kinase alpha, conserved helix-loop-helix

ubiquitous kinase

Target/Specificity CHUK; This polyclonal antibody has no cross response to IKKb or IKKy.

Reconstitution & Storage IKK alpha antibody can be stored at 4°C for three months and -20°C, stable

for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged

high temperatures.

PrecautionsIKK alpha Antibody is for research use only and not for use in diagnostic or

therapeutic procedures.

Protein Information

Name CHUK

Synonyms IKKA, TCF16

Function Serine kinase that plays an essential role in the NF-kappa-B signaling

pathway which is activated by multiple stimuli such as inflammatory

cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed: 18626576, PubMed: 9244310, PubMed: 9252186, PubMed: 9346484). Acts as a part of the canonical IKK complex in the conventional pathway of

NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed: 18626576, PubMed: 35952808, PubMed: 9244310, PubMed: 9252186, PubMed: 9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed: 18626576, PubMed: 9244310, PubMed: 9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed: 18626576, PubMed:<u>9244310</u>, PubMed:<u>9252186</u>, PubMed:<u>9346484</u>). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed:<u>21765415</u>). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed: 20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed: 17434128). Modulates chromatin accessibility at NF-kappa-B- responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed: 12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed: 15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed: 30217973).

Cellular Location

Cytoplasm. Nucleus Note=Shuttles between the cytoplasm and the nucleus

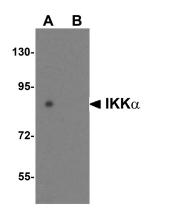
Tissue Location

Widely expressed.

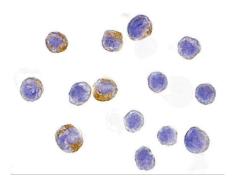
Background

IKK alpha Antibody: Nuclear factor kappa B (NF- κ B) is a ubiquitous transcription factor and an essential mediator of gene expression during activation of immune and inflammatory responses. NF- κ B mediates the expression of a great variety of genes in response to extracellular stimuli including IL-1, TNF α and bacteria product LPS. NF- κ B is associated with I κ B proteins in the cell cytoplasm, which inhibit NF- κ B activity. The long-sought I κ B kinase (IKK), which phosphorylates I κ B, and mediates I κ B degradation and NF- κ B activation, was recently identified by several laboratories. IKK is a serine protein kinase, and the IKK complex contains alpha and beta subunits (IKK α and IKK β). IKK α and IKK β interact with each other and both are essential for the NF- κ B activation. IKK α specifically phosphorylates I κ B-alpha. IKK α is expressed in a variety of human tissues.

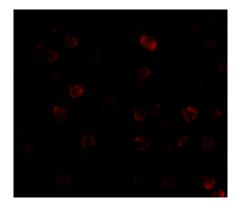
References


DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 1997;388:548-54

Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M. Identification and characterization of an IκB kinase. Cell 1997;90:373-83


Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkB kinase complex (IKK) contains two kinase

subunits, IKKα and IKKα, necessary for IκB phosphorylation and NF-κB activation. Cell 1997;91:243-52 Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DY. IκB kinase- β : NF-κB activation and complex formation with IκB kinase- α and NIK. Science 1997;278:866-9


Images

Western blot analysis of IKK alpha in HeLa cell lysate with IKK alpha antibody at 1 μ g/mL in (A) the absence and (B) the presence of blocking peptide.

Immunocytochemistry of IKK alpha in HeLa cells with IKK alpha antibody at 10 µg/mL.

Immunofluorescence of IKKa in HeLa cells with IKKa antibody at 2 μ g/mL.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.