

NOD2 Antibody

Catalog # ASC10157

Product Information

Application	WB, IF, E, IHC-P
Primary Accession	O9HC29
Other Accession	<u>09HC29</u> , <u>20137973</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	IgG
Calculated MW	115283
Concentration (mg/ml)	1 mg/mL
Conjugate	Unconjugated
Application Notes	NOD2 antibody can be used for detection of NOD2 by Western blot at 1 to 4 g/mL. Antibody can also be used for immunohistochemistry starting at 5 g/mL. For immunofluorescence start at 10 g/mL.

Additional Information

Gene ID Other Names	64127 NOD2 Antibody: CD, ACUG, BLAU, IBD1, NLRC2, NOD2B, CARD15, CLR16.3, PSORAS1, Nucleotide-binding oligomerization domain-containing protein 2, Caspase recruitment domain-containing protein 15, nucleotide-binding oligomerization domain containing 2
Target/Specificity	NOD2; At least four isoforms of NOD2 are known to exist; this antibody will only detect the longest isoform. NOD2 has no cross-reaction with NOD1.
Reconstitution & Storage	NOD2 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.
Precautions	NOD2 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Protein Information

Name	NOD2 {ECO:0000303 PubMed:11087742, ECO:0000312 HGNC:HGNC:5331}
Function	Pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals and plays an important role in gastrointestinal immunity (PubMed: <u>12514169</u> , PubMed: <u>12527755</u> , PubMed: <u>12626759</u> , PubMed: <u>15044951</u> , PubMed: <u>15998797</u> , PubMed: <u>27283905</u> , PubMed: <u>27748583</u> , PubMed: <u>31649195</u>). Specifically activated by muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan

found in every bacterial peptidoglycan type (PubMed:12514169, PubMed:12527755, PubMed:12626759, PubMed:12871942, PubMed:2504951, PubMed:15198989, PubMed:12748583, PubMed:36002575). NOD2 specifically recognizes and binds 6-O-phospho- MDP, the phosphorylated form of MDP, which is generated by NAGK (PubMed:36002575). 6-O-phospho-MDP-binding triggers oligomerization that facilitates the binding and subsequent activation of the proximal adapter receptor-interacting RIPK2 (PubMed:11087742, PubMed:17355968, PubMed:21887730, PubMed:23806334, PubMed:28436939). Following recruitment, RIPK2 undergoes 'Met1-' (linear) and 'Lys-63'-linked polyubiquitination by E3 ubiquitin-protein ligases XIAP, BIRC2, BIRC3 and the LUBAC complex, becoming a scaffolding protein for downstream effectors, triggering activation of the NF-kappa-B and MAP kinases signaling (PubMed:11087742, PubMed:12514169, PubMed:22626759, PubMed:15198989, PubMed:21887730, PubMed:23302306, PubMed:15198989, PubMed:21887730, PubMed:23322906, PubMed:15198989, PubMed:21887730, PubMed:23322906, PubMed:15198989, Its ability to detect bacterial MDP plays a central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation (By similarity). An imbalance in this relationship results in dysbiosis, whereby pathogenic bacteria prevail on commensals, causing damage in the intestinal epithelial barrier as well as allowing bacterial invasion and inflammation (By similarity). Acts as a regulator of appetite by sensing MDP in a subset of brain neurons: microbiota-derived MDP reach the brain, where they bind and activate NOD2 in inhibitory hypothalamic neurons, decreasing neuronal activity, thereby regulating satiety and body temperature (By similarity). NOD2- dependent MDP-sensing of bacterial cell walls in the intestinal epithelial compartment contributes to sustained postnatal growth upon undernutrition (By similarity). Also plays a role in antiviral response by acting as a sensor of single-stranded RNA (ssRNA) from virus
Cell membrane; Lipid-anchor. Basolateral cell membrane. Cytoplasm Mitochondrion. Note=Palmitoylation promotes localization to the cell membrane, where it detects bacterial invasion at the point of entry.
Expressed in monocytes, macrophages, dendritic cells, hepatocytes, preadipocytes, epithelial cells of oral cavity, lung and intestine, with higher expression in ileal Paneth cells and in intestinal stem cells.

Background

Cellular Location

Tissue Location

NOD2 Antibody: Apaf-1 and NOD1 are members of a new family, which are involved in the regulation of apoptosis and immune response. Each of them contains a caspase recruitment domain (CARD) and a nucleotide-binding oligomerization domain (NOD). A third member in this family was recently identified and designated NOD2. NOD2 interacts with RICK via a homophilic CARD-CARD interaction. NOD2 activates NF-KB, which is regulated by its carboxy-terminal leucine-rich repeat domain that acts as an intracellular receptor for components of bacteria. The variants of NOD2, either a frameshift or a missense, were associated with Crohn's disease that is a main type of chronic inflammatory bowel disease.

References

Inohara N, Koseki T, del Peso L, et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem. 1999; 274:14560-7.

Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 2001; 276:4812-8.

Hugot JP, Chamaillard M, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411:599-603.

Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411:603-6.

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.