

NAT11 Antibody

Catalog # ASC11040

Product Information

Application WB, IF, E, IHC-P

Primary Accession Q86UY6

Other Accession <u>NP_079047</u>, <u>189571650</u>

Reactivity Human, Mouse

Host Rabbit
Clonality Polyclonal
Isotype IgG
Calculated MW 27194
Concentration (mg/ml) 1 mg/mL
Conjugate Unconjugated

Application Notes NAT11 antibody can be used for detection of NAT11 by Western blot at 1 - 2

□g/mL. Antibody can also be used for immunohistochemistry starting at 5

□g/mL. For immunofluorescence start at 20 □g/mL.

Additional Information

Gene ID 79829

Other Names N-alpha-acetyltransferase 40, 2.3.1.-, N-acetyltransferase 11, NatD catalytic

subunit, NAA40, NAT11

Target/Specificity NAA40;

Reconstitution & Storage NAT11 antibody can be stored at 4°C for three months and -20°C, stable for

up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high

temperatures.

Precautions NAT11 Antibody is for research use only and not for use in diagnostic or

therapeutic procedures.

Protein Information

NAA40 {ECO:0000303 | PubMed:19660095,

ECO:0000312 | HGNC:HGNC:25845}

Function N-alpha-acetyltransferase that specifically mediates the acetylation of the

N-terminal residues of histones H4 and H2A (PubMed:21935442,

PubMed: <u>25619998</u>). In contrast to other N-alpha- acetyltransferase, has a very specific selectivity for histones H4 and H2A N-terminus and specifically

recognizes the 'Ser-Gly-Arg-Gly sequence' (PubMed: 21935442, PubMed: 25619998). Acts as a negative regulator of apoptosis

(PubMed: <u>26666750</u>). May play a role in hepatic lipid metabolism (By

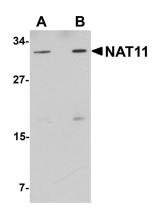
similarity).

Cellular Location Cytoplasm. Nucleus

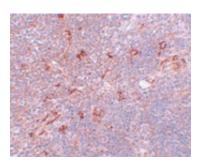
Tissue Location Widely expressed; with the highest expression level in liver and the lowest

expression in brain (at protein level)

Background

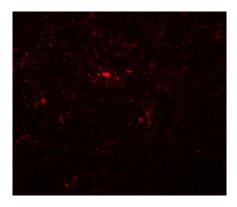

NAT11 Antibody: N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring on approximately 57% and 84% on yeast and human proteins respectively. There are several N-terminal acetylating enzyme complexes (NatA - NatE). Unlike the other complexes, NatD is composed of a single protein, NAT11, and has recently been described to acetylate the Serine N-termini of histones H2A and H4 in yeast. The role these modifications play is unknown; yeast that do not express NAT11 grow at normal rates and have no observable phenotypes. The role of the human homolog is likewise unknown.

References


Arnesen T, Van Damme P, Polevoda B, et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci. USA2009; 106:8157-62.

OK Song, Wang X, Waterborg JH, et al. An Nalpha-acetyl-transferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J. Biol. Chem.2003; 278:38109-1

Images



Western blot analysis of NAT11 in human thymus tissue lysate with NAT11 antibody at (A) 1 and (B) 2 µg/mL.

Immunohistochemistry of NAT11 in mouse thymus tissue with NAT11 antibody at 5 μ g/mL.

Immunofluorescence of NAT11 in mouse thymus tissue with NAT11 antibody at 20 µg/mL.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.