

AIMP2 Antibody

Catalog # ASC11715

Product Information

Application WB, IF, E, IHC-P

Primary Accession Q13155

Other Accession NP_006294, 11125770

Reactivity
Human
Rabbit
Clonality
Polyclonal
Isotype
IgG
Calculated MW
35349
Concentration (mg/ml)
Conjugate
Human
Rabbit
Rabbit
Polyclonal
IgG
Unconjugate

Application Notes AIMP2 antibody can be used for detection of AIMP2 by Western blot at 1 - 2

□g/ml.

Additional Information

Gene ID 7965

Other Names Aminoacyl tRNA synthase complex-interacting multifunctional protein 2,

Multisynthase complex auxiliary component p38, Protein JTV-1, AIMP2, JTV1

Target/Specificity AIMP2; AIMP2 antibody is human specific. AIMP2 antibody is predicted to not

cross-react with AIMP1.

Reconstitution & Storage AIMP2 antibody can be stored at 4°C for three months and -20°C, stable for

up to one year.

Precautions AIMP2 Antibody is for research use only and not for use in diagnostic or

therapeutic procedures.

Protein Information

Name AIMP2

Synonyms JTV1

Function Required for assembly and stability of the aminoacyl-tRNA synthase complex

(PubMed:<u>19131329</u>). Mediates ubiquitination and degradation of FUBP1, a transcriptional activator of MYC, leading to MYC down-regulation which is required for aveolar type II cell differentiation. Blocks MDM2-mediated ubiquitination and degradation of p53/TP53. Functions as a proapoptotic

factor.

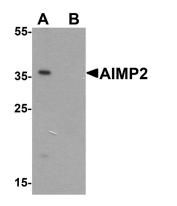
Cellular Location Cytoplasm, cytosol. Nucleus {ECO:0000250 | UniProtKB:Q8R010}.

Note=Following DNA damage, dissociates from the aminoacyl-tRNA synthase

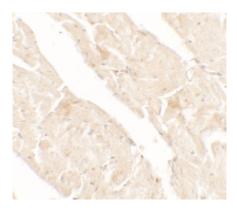
complex and translocates from the cytoplasm to the nucleus. {ECO:0000250|UniProtKB:Q8R010}

Background

AIMP2 was initially identified as a part of an aminoacyl-tRNA synthesase complex (1). It was later discovered to be a cofactor and substrate of Parkin, a Ring-type E3 ubiquitin ligase that is important for the survival of dopamine neurons in Parkinson's disease; accumulation of AIMP2 in these cells lead to catecholaminergic cell death (2). AIMP2 can also bind to TRAF2, a key player in the TNF-alpha signaling pathway, causing the ubiquitination of TRAF2 by cIAP1, leading to TNF-alpha-dependent apoptosis (3). Finally, AIMP2 has been suggested to function as a tumor suppressor (4).

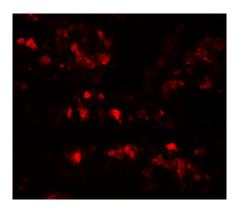

References

Quevillon S, Robinson JC, Berthonneau E, et al. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. J. Mol. Biol. 1999; 285:183-95.


Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neruosci. 2005; 25:7968-78. Choi JW, Kim DG, Park MC, et al. AIMP2 promotes TNFalpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J. Cell Sci. 2009; 122:2710-5.

Choi JW, UM JY, Kundu JK, et al. Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis 2009; 30:1638-44.

Images



Western blot analysis of AIMP2 in HeLa cell lysate with AIMP2 antibody at 1 μ g/ml in (A) the absence and (B) the presence of blocking peptide.

Immunohistochemistry of AIMP2 in rat small intestine tissue with AIMP2 antibody at 5 µg/mL.

Immunofluorescence of AIMP2 in rat small intestine tissue with AIMP2 antibody at 20 µg/mL.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.