

IFN-y Catalog # PVGS1209

Product Information

Primary Accession P01579
Species Human

Sequence Gln24-Gln166

Purity > 95% as analyzed by SDS-PAGE

> 95% as analyzed by HPLC

Endotoxin Level

Expression System CHO

Formulation Lyophilized after extensive dialysis against PBS.

Reconstitution It is recommended that this vial be briefly centrifuged prior to opening to

bring the contents to the bottom. Reconstitute the lyophilized powder in

ddH₂O or PBS up to 100 □g/ml.

Storage & Stability Upon receiving, this product remains stable for up to 6 months at lower than

-70°C. Upon reconstitution, the product should be stable for up to 1 week at 4°C or up to 3 months at -20°C. For long term storage it is recommended that a carrier protein (example 0.1% BSA) be added. Avoid repeated freeze-thaw

cycles.

Additional Information

Gene ID 3458

Other Names Interferon gamma, IFN-gamma, Immune interferon, IFNG

Target Background Human Interferon gamma (hIFN-γ) is amacrophage-activating factor and the

lone member of Interferon type II. The active form of IFN-y is an antiparallel dimer that interacts with the receptor IFN-yR1 and sets off IFN-y/JAK/STAT pathway. IFN-y signaling does diverse biological functions primarily related to host defense and immune regulation, including antiviral and antibacterial defense, apoptosis, inflammation, and innate and acquired immunity. While IFN-y-induced inflammatory cascade summons a variety of immune-related cell types, such as macrophages, natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), IFN-y is also implicated in resistance to NK cell and CTL

responses and in immune escape in a variety of cancers.

Protein Information

Name IFNG

Function

Type II interferon produced by immune cells such as T-cells and NK cells that plays crucial roles in antimicrobial, antiviral, and antitumor responses by activating effector immune cells and enhancing antigen presentation (PubMed:16914093, PubMed:8666937). Primarily signals through the JAK-STAT pathway after interaction with its receptor IFNGR1 to affect gene regulation (PubMed:8349687). Upon IFNG binding, IFNGR1 intracellular domain opens out to allow association of downstream signaling components JAK2, JAK1 and STAT1, leading to STAT1 activation, nuclear translocation and transcription of IFNG-regulated genes. Many of the induced genes are transcription factors such as IRF1 that are able to further drive regulation of a next wave of transcription (PubMed: 16914093). Plays a role in class I antigen presentation pathway by inducing a replacement of catalytic proteasome subunits with immunoproteasome subunits (PubMed:8666937). In turn, increases the quantity, quality, and repertoire of peptides for class I MHC loading (PubMed:8163024). Increases the efficiency of peptide generation also by inducing the expression of activator PA28 that associates with the proteasome and alters its proteolytic cleavage preference (PubMed: 11112687). Up-regulates as well MHC II complexes on the cell surface by promoting expression of several key molecules such as cathepsins B/CTSB, H/CTSH, and L/CTSL (PubMed:7729559). Participates in the regulation of hematopoietic stem cells during development and under homeostatic conditions by affecting their development, quiescence, and differentiation (By similarity).

Cellular Location

Secreted.

Tissue Location

Released primarily from activated T lymphocytes.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.