GST Antibody
Purified Mouse Monoclonal Antibody (Mab)
- 产品详情
- 文献引用 : 1
- 实验流程
- 背景知识
Application
| WB, E |
|---|---|
| Reactivity | Human |
| Host | Mouse |
| Clonality | Monoclonal |
| Isotype | IgG1 k |
| Clone Names | 21CT54.13.1 / 21CT54.13.7 |
| Calculated MW | 26000 Da |
| Other Names | Glutathione S-transferase |
|---|---|
| Target/Specificity | Purified recombinant GST fusion protein was used to produced this monoclonal antibody. |
| Dilution | WB~~1:100~500 E~~Use at an assay dependent concentration. |
| Format | Purified monoclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein G column, followed by dialysis against PBS. |
| Storage | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. |
| Precautions | GST Antibody is for research use only and not for use in diagnostic or therapeutic procedures. |
For Research Use Only. Not For Use In Diagnostic Procedures.

Provided below are standard protocols that you may find useful for product applications.
BACKGROUND
Glutathione S-transferase (GST) was originally cloned from parasite Schistosoma japonicum and it is now a widely used protein fusion partner. Vectors containing GST Tag have been developed for both prokaryotic and eukaryotic systems. The GST fusion proteins are easily purified from cell lysates by affinity chromatography using Glutathione Sepharose 4B to elute out the GST fusion protein from the column with a denaturing form of glutathione. Using the Abgent anti-GST antibody provides a simple solution to detect the expression of GST fusion proteins in cells.
REFERENCES
Smith, D.B. and Johnson, K.S., (1988). Gene 67, 31. Parker, M.W. et al., (1990) J. Mol. Biol. 213, 221. Toye, B. et al., (1990) Infect. Immun. 58, 3909. Guan, K.L. and Dixon, J.E. (1991) Anal. Biochem. 192, 262
终于等到您。ABCEPTA(百远生物)抗体产品。
点击下方“我要评价 ”按钮提交您的反馈信息,您的反馈和评价是我们最宝贵的财富之一,
我们将在1-3个工作日内处理您的反馈信息。
如有疑问,联系:0512-88856768 tech-china@abcepta.com.
















癌症的基本特征包括细胞增殖、血管生成、迁移、凋亡逃避机制和细胞永生等。找到癌症发生过程中这些通路的关键标记物和对应的抗体用于检测至关重要。
为您推荐一个泛素化位点预测神器——泛素化分析工具,可以为您的蛋白的泛素化位点作出预测和评分。
细胞自噬受体图形绘图工具为你的蛋白的细胞受体结合位点作出预测和评分,识别结合到自噬通路中的蛋白是非常重要的,便于让我们理解自噬在正常生理、病理过程中的作用,如发育、细胞分化、神经退化性疾病、压力条件下、感染和癌症。