Anti-NMDA NR1 Subunit Antibody
Our Anti-NMDA NR1 Subunit primary antibody from PhosphoSolutions is mouse monoclonal. It detects hum
- 产品详情
- 实验流程
- 背景知识
Application
| WB, IHC, ICC |
|---|---|
| Primary Accession | P35439 |
| Host | Mouse |
| Clonality | Monoclonal |
| Isotype | IgG |
| Clone Names | R1JHL |
| Calculated MW | 105509 Da |
| Gene ID | 24408 |
|---|---|
| Other Names | GluN1 antibody, Glutamate [NMDA] receptor subunit zeta-1 antibody, Glutamate receptor ionotropic N methyl D aspartate 1 antibody, Glutamate receptor ionotropic N-methyl-D aspartate subunit 1 antibody, glutamate receptor ionotropic NMDA 1 antibody, Grin1 antibody, MRD8 antibody, N methyl D aspartate receptor antibody, N methyl D aspartate receptor channel subunit zeta 1 antibody, N methyl D aspartate receptor subunit NR1 antibody, N-methyl-D-aspartate receptor subunit NR1 antibody, NMD-R1 antibody, NMDA 1 antibody, NMDA R1 antibody, NMDAR1 antibody, NMDA receptor 1 antibody, NMDA1 antibody, NMDAR antibody, NMDZ1_HUMAN antibody, NR1 antibody |
| Target/Specificity | The ion channels activated by glutamate are typically divided into two classes. Glutamate receptors that are activated by kainate and α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid (AMPA) are known as kainate/AMPA receptors (K/AMPAR). Those that are sensitive to Nmethyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer’s, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The rat NMDAR1 (NR1) was the first subunit of the NMDAR to be cloned. The NR1 protein can form NMDA activated channels when expressed in Xenopus oocytes but the currents in such channels are much smaller than those seen in situ. Channels with more physiological characteristics are produced when the NR1-subunit is combined with one or more of the NMDAR2 (NR2 A-D) subunits. |
| Dilution | WB~~1:1000 IHC~~1:100~500 ICC~~N/A |
| Format | Culture supernatant |
| Storage | Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. |
| Precautions | Anti-NMDA NR1 Subunit Antibody is for research use only and not for use in diagnostic or therapeutic procedures. |
| Shipping | Blue Ice |
For Research Use Only. Not For Use In Diagnostic Procedures.
Provided below are standard protocols that you may find useful for product applications.
BACKGROUND
The ion channels activated by glutamate are typically divided into two classes. Glutamate receptors that are activated by kainate and α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid (AMPA) are known as kainate/AMPA receptors (K/AMPAR). Those that are sensitive to Nmethyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer’s, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The rat NMDAR1 (NR1) was the first subunit of the NMDAR to be cloned. The NR1 protein can form NMDA activated channels when expressed in Xenopus oocytes but the currents in such channels are much smaller than those seen in situ. Channels with more physiological characteristics are produced when the NR1-subunit is combined with one or more of the NMDAR2 (NR2 A-D) subunits.
终于等到您。ABCEPTA(百远生物)抗体产品。
点击下方“我要评价 ”按钮提交您的反馈信息,您的反馈和评价是我们最宝贵的财富之一,
我们将在1-3个工作日内处理您的反馈信息。
如有疑问,联系:0512-88856768 tech-china@abcepta.com.
















癌症的基本特征包括细胞增殖、血管生成、迁移、凋亡逃避机制和细胞永生等。找到癌症发生过程中这些通路的关键标记物和对应的抗体用于检测至关重要。
为您推荐一个泛素化位点预测神器——泛素化分析工具,可以为您的蛋白的泛素化位点作出预测和评分。
细胞自噬受体图形绘图工具为你的蛋白的细胞受体结合位点作出预测和评分,识别结合到自噬通路中的蛋白是非常重要的,便于让我们理解自噬在正常生理、病理过程中的作用,如发育、细胞分化、神经退化性疾病、压力条件下、感染和癌症。